Practical Cryptography in High Dimensional Tori
نویسندگان
چکیده
At Crypto 2004, van Dijk and Woodruff introduced a new way of using the algebraic tori Tn in cryptography, and obtained an asymptotically optimal n/φ(n) savings in bandwidth and storage for a number of cryptographic applications. However, the computational requirements of compression and decompression in their scheme were impractical, and it was left open to reduce them to a practical level. We give a new method that compresses orders of magnitude faster than the original, while also speeding up the decompression and improving on the compression factor (by a constant term). Further, we give the first efficient implementation that uses T30, compare its performance to XTR, CEILIDH, and ECC, and present new applications. Our methods achieve better compression than XTR and CEILIDH for the compression of as few as two group elements. This allows us to apply our results to ElGamal encryption with a small message domain to obtain ciphertexts that are 10% smaller than in previous schemes.
منابع مشابه
On small degree extension fields in cryptology
This thesis studies the implications of using public key cryptographic primitives that are based in, or map to, the multiplicative group of finite fields with small extension degree. A central observation is that the multiplicative group of extension fields essentially decomposes as a product of algebraic tori, whose properties allow for improved communication efficiency. Part I of this thesis ...
متن کاملTopological Compression Factors of 2-Dimensional TUC4C8(R) Lattices and Tori
We derived explicit formulae for the eccentric connectivity index and Wiener index of 2-dimensional square-octagonal TUC4C8(R) lattices with open and closed ends. New compression factors for both indices are also computed in the limit N-->∞.
متن کاملNew Constructions for De Bruijn Tori
A De Bruijn torus is a periodic d−dimensional k−ary array such that each n1 × · · · × nd k−ary array appears exactly once with the same period. We describe two new methods of constructing such arrays. The first is a type of product that constructs a k1k2−ary torus from a k1−ary torus and a k2−ary torus. The second uses a decomposition of a d-dimensional torus to produce a d + 1 dimensional toru...
متن کاملOn the Discrete Logarithm Problem on Algebraic Tori
Using a recent idea of Gaudry and exploiting rational representations of algebraic tori, we present an index calculus type algorithm for solving the discrete logarithm problem that works directly in these groups. Using a prototype implementation, we obtain practical upper bounds for the difficulty of solving the DLP in the tori T2(Fpm) and T6(Fpm) for various p and m. Our results do not affect ...
متن کاملAlgebraic tori in cryptography
We give a mathematical interpretation in terms of algebraic tori of Lucas-based cryptosystems, XTR, and the conjectural generalizations in [2]. We show that the varieties underlying these systems are quotients of algebraic tori by actions of products of symmetric groups. Further, we use these varieties to disprove conjectures from [2].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2004 شماره
صفحات -
تاریخ انتشار 2004